Blog

  • TREE

    In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are usable as lumber or plants above a specified height. In wider definitions, the taller palmstree fernsbananas, and bamboos are also trees.

    Trees are not a monophyletic taxonomic group but consist of a wide variety of plant species that have independently evolved a trunk and branches as a way to tower above other plants to compete for sunlight. The majority of tree species are angiosperms or hardwoods; of the rest, many are gymnosperms or softwoods. Trees tend to be long-lived, some trees reaching several thousand years old. Trees evolved around 370 million years ago, and it is estimated that there are around three trillion mature trees in the world currently.

    A tree typically has many secondary branches supported clear of the ground by the trunk, which typically contains woody tissue for strength, and vascular tissue to carry materials from one part of the tree to another. For most trees the trunk is surrounded by a layer of bark which serves as a protective barrier. Below the ground, the roots branch and spread out widely; they serve to anchor the tree and extract moisture and nutrients from the soil. Above ground, the branches divide into smaller branches and shoots. The shoots typically bear leaves, which capture light energy and convert it into sugars by photosynthesis, providing the food for the tree’s growth and development.

    Trees usually reproduce using seeds. Flowering plants have their seeds inside fruits, while conifers carry their seeds in cones, and tree ferns produce spores instead.

    Trees play a significant role in reducing erosion and moderating the climate. They remove carbon dioxide from the atmosphere and store large quantities of carbon in their tissues. Trees and forests provide a habitat for many species of animals and plants. Tropical rainforests are among the most biodiverse habitats in the world. Trees provide shade and shelter, timber for construction, fuel for cooking and heating, and fruit for food as well as having many other uses. In much of the world, forests are shrinking as trees are cleared to increase the amount of land available for agriculture. Because of their longevity and usefulness, trees have always been revered, with sacred groves in various cultures, and they play a role in many of the world’s mythologies.

    Definition

    Diagram of secondary growth in a eudicot or coniferous tree showing idealised vertical and horizontal sections. A new layer of wood is added in each growing season, thickening the stem, existing branches and roots.

    Although “tree” is a common word, there is no universally recognised precise definition of what a tree is, either botanically or in common language.[1][2] In its broadest sense, a tree is any plant with the general form of an elongated stem, or trunk, which supports the photosynthetic leaves or branches at some distance above the ground.[3] Trees are also typically defined by height,[4] with smaller plants from 0.5 to 10 m (1.6 to 32.8 ft) being called shrubs,[5] so the minimum height of a tree is only loosely defined.[4] Large herbaceous plants such as papaya and bananas are trees in this broad sense.[2][6]

    A commonly applied narrower definition is that a tree has a woody trunk formed by secondary growth, meaning that the trunk thickens each year by growing outwards, in addition to the primary upwards growth from the growing tip.[4][7] Under such a definition, herbaceous plants such as palms, bananas and papayas are not considered trees regardless of their height, growth form or stem girth. Certain monocots may be considered trees under a slightly looser definition;[8] while the Joshua tree, bamboos and palms do not have secondary growth and never produce true wood with growth rings,[9][10] they may produce “pseudo-wood” by lignifying cells formed by primary growth.[11] Tree species in the genus Dracaena, despite also being monocots, do have secondary growth caused by meristem in their trunk, but it is different from the thickening meristem found in dicotyledonous trees.[12]

    Aside from structural definitions, trees are commonly defined by use; for instance, as those plants which yield lumber.[13]

    Overview

    “Saplings” redirects here. For the novel, see Saplings (novel). For the film, see The Saplings. For the episode, see Saplings (Weeds).

    The tree growth habit is an evolutionary adaptation found in different groups of plants: by growing taller, trees are able to compete better for sunlight.[14] Trees tend to be tall and long-lived,[15] some reaching several thousand years old.[16] Several trees are among the oldest organisms now living.[17] Trees have modified structures such as thicker stems composed of specialised cells that add structural strength and durability, allowing them to grow taller than many other plants and to spread out their foliage. They differ from shrubs, which have a similar growth form, by usually growing larger and having a single main stem;[5] but there is no consistent distinction between a tree and a shrub,[18] made more confusing by the fact that trees may be reduced in size under harsher environmental conditions such as on mountains and subarctic areas. The tree form has evolved separately in unrelated classes of plants in response to similar environmental challenges, making it a classic example of parallel evolution. With an estimated 60,000-100,000 species, the number of trees worldwide might total twenty-five per cent of all living plant species.[19][20] The greatest number of these grow in tropical regions; many of these areas have not yet been fully surveyed by botanists, making tree diversity and ranges poorly known.[21]

    Tall herbaceous monocotyledonous plants such as banana lack secondary growth, but are trees under the broadest definition.

    The majority of tree species are angiosperms or hardwoods. Of the rest, many are gymnosperms or softwood trees;[22] these include coniferscycadsginkgophytes and gnetales, which produce seeds which are not enclosed in fruits, but in open structures such as pine cones, and many have tough waxy leaves, such as pine needles.[23] Most angiosperm trees are eudicots, the “true dicotyledons”, so named because the seeds contain two cotyledons or seed leaves. There are also some trees among the old lineages of flowering plants called basal angiosperms or paleodicots; these include AmborellaMagnolianutmeg and avocado,[24] while trees such as bamboo, palms and bananas are monocots.

    Wood gives structural strength to the trunk of most types of tree; this supports the plant as it grows larger. The vascular system of trees allows water, nutrients and other chemicals to be distributed around the plant, and without it trees would not be able to grow as large as they do. Trees need to draw water high up the stem through the xylem from the roots by capillary action, as water continually evaporates from the leaves in the process of transpiration. If insufficient water is available the leaves will die.[25] The three main parts of trees include the root, stem, and leaves; they are integral parts of the vascular system which interconnects all the living cells. In trees and other plants that develop wood, the vascular cambium allows the expansion of vascular tissue that produces woody growth. Because this growth ruptures the epidermis of the stem, woody plants also have a cork cambium that develops among the phloem. The cork cambium gives rise to thickened cork cells to protect the surface of the plant and reduce water loss. Both the production of wood and the production of cork are forms of secondary growth.[26]

    Trees are either evergreen, having foliage that persists and remains green throughout the year,[27] or deciduous, shedding their leaves at the end of the growing season and then having a dormant period without foliage.[28] Most conifers are evergreens, but larches (Larix and Pseudolarix) are deciduous, dropping their needles each autumn, and some species of cypress (GlyptostrobusMetasequoia and Taxodium) shed small leafy shoots annually in a process known as cladoptosis.[5] The crown is the spreading top of a tree including the branches and leaves,[29] while the uppermost layer in a forest, formed by the crowns of the trees, is known as the canopy.[30] A sapling is a young tree.[31]

    Many tall palms are herbaceous[32] monocots, which do not undergo secondary growth and never produce wood.[9][10] In many tall palms, the terminal bud on the main stem is the only one to develop, so they have unbranched trunks with large spirally arranged leaves. Some of the tree ferns, order Cyatheales, have tall straight trunks, growing up to 20 metres (66 ft), but these are composed not of wood but of rhizomes which grow vertically and are covered by numerous adventitious roots.[33]

    Distribution

    Further information: Forest

    The Daintree Rainforest

    The number of trees in the world, according to a 2015 estimate, is 3.04 trillion, of which 1.39 trillion (46%) are in the tropics or sub-tropics, 0.61 trillion (20%) in the temperate zones, and 0.74 trillion (24%) in the coniferous boreal forests. The estimate is about eight times higher than previous estimates, and is based on tree densities measured on over 400,000 plots. It remains subject to a wide margin of error, not least because the samples are mainly from Europe and North America. The estimate suggests that about 15 billion trees are cut down annually and about 5 billion are planted. In the 12,000 years since the start of human agriculture, the number of trees worldwide has decreased by 46%.[34][35][36][37] There are approximately 64,100 known tree species in the world. With 43% of all tree species, South America has the highest biodiversity, followed by Eurasia (22%), Africa (16%), North America (15%), and Oceania (11%).[38]

    In suitable environments, such as the Daintree Rainforest in Queensland, or the mixed podocarp and broadleaf forest of Ulva Island, New Zealand, forest is the more-or-less stable climatic climax community at the end of a plant succession, where open areas such as grassland are colonised by taller plants, which in turn give way to trees that eventually form a forest canopy.[39][40]

    Conifers in the Swabian alps

    In cool temperate regions, conifers often predominate; a widely distributed climax community in the far north of the northern hemisphere is moist taiga or northern coniferous forest (also called boreal forest).[41][42] Taiga is the world’s largest land biome, forming 29% of the world’s forest cover.[43] The long cold winter of the far north is unsuitable for plant growth and trees must grow rapidly in the short summer season when the temperature rises and the days are long. Light is very limited under their dense cover and there may be little plant life on the forest floor, although fungi may abound.[44] Similar woodland is found on mountains where the altitude causes the average temperature to be lower thus reducing the length of the growing season.[45]

    Where rainfall is relatively evenly spread across the seasons in temperate regions, temperate broadleaf and mixed forest typified by species like oak, beech, birch and maple is found.[46] Temperate forest is also found in the southern hemisphere, as for example in the Eastern Australia temperate forest, characterised by Eucalyptus forest and open acacia woodland.[47]

    In tropical regions with a monsoon or monsoon-like climate, where a drier part of the year alternates with a wet period as in the Amazon rainforest, different species of broad-leaved trees dominate the forest, some of them being deciduous.[48] In tropical regions with a drier savanna climate and insufficient rainfall to support dense forests, the canopy is not closed, and plenty of sunshine reaches the ground which is covered with grass and scrub. Acacia and baobab are well adapted to living in such areas.[49]

    Parts

    Roots

    Main article: Root

    A young red pine (Pinus resinosa) with spread of roots visible, as a result of soil erosion

    The roots of a tree serve to anchor it to the ground and gather water and nutrients to transfer to all parts of the tree. They are also used for reproduction, defence, survival, energy storage and many other purposes. The radicle or embryonic root is the first part of a seedling to emerge from the seed during the process of germination. This develops into a taproot which goes straight downwards. Within a few weeks lateral roots branch out of the side of this and grow horizontally through the upper layers of the soil. In most trees, the taproot eventually withers away and the wide-spreading laterals remain. Near the tip of the finer roots are single cell root hairs. These are in immediate contact with the soil particles and can absorb water and nutrients such as potassium in solution. The roots require oxygen to respire and only a few species such as mangroves and the pond cypress (Taxodium ascendens) can live in permanently waterlogged soil.[50]

    In the soil, the roots encounter the hyphae of fungi. Many of these are known as mycorrhiza and form a mutualistic relationship with the tree roots. Some are specific to a single tree species, which will not flourish in the absence of its mycorrhizal associate. Others are generalists and associate with many species. The tree acquires minerals such as phosphorus from the fungus, while the fungus obtains the carbohydrate products of photosynthesis from the tree.[51] The hyphae of the fungus can link different trees and a network is formed, transferring nutrients and signals from one place to another.[52] The fungus promotes growth of the roots and helps protect the trees against predators and pathogens. It can also limit damage done to a tree by pollution as the fungus accumulate heavy metals within its tissues.[53] Fossil evidence shows that roots have been associated with mycorrhizal fungi since the early Paleozoic, four hundred million years ago, when the first vascular plants colonised dry land.[54]

    Buttress roots of the kapok tree (Ceiba pentandra)

    Some trees such as Alder (Alnus species) have a symbiotic relationship with Frankia species, a filamentous bacterium that can fix nitrogen from the air, converting it into ammonia. They have actinorhizal root nodules on their roots in which the bacteria live. This process enables the tree to live in low nitrogen habitats where they would otherwise be unable to thrive.[55] The plant hormones called cytokinins initiate root nodule formation, in a process closely related to mycorrhizal association.[56]

    It has been demonstrated that some trees are interconnected through their root system, forming a colony. The interconnections are made by the inosculation process, a kind of natural grafting or welding of vegetal tissues. The tests to demonstrate this networking are performed by injecting chemicals, sometimes radioactive, into a tree, and then checking for its presence in neighbouring trees.[57]

    The roots are, generally, an underground part of the tree, but some tree species have evolved roots that are aerial. The common purposes for aerial roots may be of two kinds, to contribute to the mechanical stability of the tree, and to obtain oxygen from air. An instance of mechanical stability enhancement is the red mangrove that develops prop roots that loop out of the trunk and branches and descend vertically into the mud.[58] A similar structure is developed by the Indian banyan.[59] Many large trees have buttress roots which flare out from the lower part of the trunk. These brace the tree rather like angle brackets and provide stability, reducing sway in high winds. They are particularly prevalent in tropical rainforests where the soil is poor and the roots are close to the surface.[60]

    Some tree species have developed root extensions that pop out of soil, in order to get oxygen, when it is not available in the soil because of excess water. These root extensions are called pneumatophores, and are present, among others, in black mangrove and pond cypress.[58]

    Trunk

    Main article: Trunk (botany)

    Northern beech (Fagus sylvatica) trunk in autumn

    The main purpose of the trunk is to raise the leaves above the ground, enabling the tree to overtop other plants and outcompete them for light.[61] It also transports water and nutrients from the roots to the aerial parts of the tree, and distributes the food produced by the leaves to all other parts, including the roots.[62]

    In the case of angiosperms and gymnosperms, the outermost layer of the trunk is the bark, mostly composed of dead cells of phellem (cork).[63] It provides a thick, waterproof covering to the living inner tissue. It protects the trunk against the elements, disease, animal attack and fire. It is perforated by a large number of fine breathing pores called lenticels, through which oxygen diffuses. Bark is continually replaced by a living layer of cells called the cork cambium or phellogen.[63] The London plane (Platanus × hispanica) periodically sheds its bark in large flakes. Similarly, the bark of the silver birch (Betula pendula) peels off in strips. As the tree’s girth expands, newer layers of bark are larger in circumference, and the older layers develop fissures in many species. In some trees such as the pine (Pinus species) the bark exudes sticky resin which deters attackers whereas in rubber trees (Hevea brasiliensis) it is a milky latex that oozes out. The quinine bark tree (Cinchona officinalis) contains bitter substances to make the bark unpalatable.[62] Large tree-like plants with lignified trunks in the PteridophytaArecalesCycadophyta and Poales such as the tree ferns, palms, cycads and bamboos have different structures and outer coverings.[64]

    A section of yew (Taxus baccata) showing 27 annual growth rings, pale sapwood and dark heartwood

    Although the bark functions as a protective barrier, it is itself attacked by boring insects such as beetles. These lay their eggs in crevices and the larvae chew their way through the cellulose tissues leaving a gallery of tunnels. This may allow fungal spores to gain admittance and attack the tree. Dutch elm disease is caused by a fungus (Ophiostoma species) carried from one elm tree to another by various beetles. The tree reacts to the growth of the fungus by blocking off the xylem tissue carrying sap upwards and the branch above, and eventually the whole tree, is deprived of nourishment and dies. In Britain in the 1990s, 25 million elm trees were killed by this disease.[65]

    The innermost layer of bark is known as the phloem and this is involved in the transport of the sap containing the sugars made by photosynthesis to other parts of the tree. It is a soft spongy layer of living cells, some of which are arranged end to end to form tubes. These are supported by parenchyma cells which provide padding and include fibres for strengthening the tissue.[66] Inside the phloem is a layer of undifferentiated cells one cell thick called the vascular cambium layer. The cells are continually dividing, creating phloem cells on the outside and wood cells known as xylem on the inside.[67]

    The newly created xylem is the sapwood. It is composed of water-conducting cells and associated cells which are often living, and is usually pale in colour. It transports water and minerals from the roots to the upper parts of the tree. The oldest, inner part of the sapwood is progressively converted into heartwood as new sapwood is formed at the cambium. The conductive cells of the heartwood are blocked in some species. Heartwood is usually darker in colour than the sapwood. It is the dense central core of the trunk giving it rigidity. Three quarters of the dry mass of the xylem is cellulose, a polysaccharide, and most of the remainder is lignin, a complex polymer. A transverse section through a tree trunk or a horizontal core will show concentric circles of lighter or darker wood – tree rings.[68] These rings are the annual growth rings[69][70] There may also be rays running at right angles to growth rings. These are vascular rays which are thin sheets of living tissue permeating the wood.[68] Many older trees may become hollow but may still stand upright for many years.[71]

    Buds and growth

    Further information: Bud

    Trees do not usually grow continuously throughout the year but mostly have spurts of active expansion followed by periods of rest. This pattern of growth is related to climatic conditions; growth normally ceases when conditions are either too cold or too dry. In readiness for the inactive period, trees form buds to protect the meristem, the zone of active growth. Before the period of dormancy, the last few leaves produced at the tip of a twig form scales. These are thick, small and closely wrapped and enclose the growing point in a waterproof sheath. Inside this bud there is a rudimentary stalk and neatly folded miniature leaves, ready to expand when the next growing season arrives. Buds also form in the axils of the leaves ready to produce new side shoots. A few trees, such as the eucalyptus, have “naked buds” with no protective scales and some conifers, such as the Lawson’s cypress, have no buds but instead have little pockets of meristem concealed among the scale-like leaves.[72]

    When growing conditions improve, such as the arrival of warmer weather and the longer days associated with spring in temperate regions, growth starts again. The expanding shoot pushes its way out, shedding the scales in the process. These leave behind scars on the surface of the twig. The whole year’s growth may take place in just a few weeks. The new stem is unlignified at first and may be green and downy. The Arecaceae (palms) have their leaves spirally arranged on an unbranched trunk.[72] In some tree species in temperate climates, a second spurt of growth, a Lammas growth may occur which is believed to be a strategy to compensate for loss of early foliage to insect predators.[73]

    Primary growth is the elongation of the stems and roots. Secondary growth consists of a progressive thickening and strengthening of the tissues as the outer layer of the epidermis is converted into bark and the cambium layer creates new phloem and xylem cells. The bark is inelastic.[74] Eventually the growth of a tree slows down and stops and it gets no taller. If damage occurs the tree may in time become hollow.[75]

    Leaves

    Main article: Leaf

    Leaves are structures specialised for photosynthesis and are arranged on the tree in such a way as to maximise their exposure to light without shading each other.[76] They are an important investment by the tree and may be thorny or contain phytolithsligninstannins or poisons to discourage herbivory. Trees have evolved leaves in a wide range of shapes and sizes, in response to environmental pressures including climate and predation. They can be broad or needle-like, simple or compound, lobed or entire, smooth or hairy, delicate or tough, deciduous or evergreen. The needles of coniferous trees are compact but are structurally similar to those of broad-leaved trees. They are adapted for life in environments where resources are low or water is scarce. Frozen ground may limit water availability and conifers are often found in colder places at higher altitudes and higher latitudes than broad leaved trees. In conifers such as fir trees, the branches hang down at an angle to the trunk, enabling them to shed snow. In contrast, broad leaved trees in temperate regions deal with winter weather by shedding their leaves. When the days get shorter and the temperature begins to decrease, the leaves no longer make new chlorophyll and the red and yellow pigments already present in the blades become apparent.[76] Synthesis in the leaf of a plant hormone called auxin also ceases. This causes the cells at the junction of the petiole and the twig to weaken until the joint breaks and the leaf floats to the ground. In tropical and subtropical regions, many trees keep their leaves all year round. Individual leaves may fall intermittently and be replaced by new growth but most leaves remain intact for some time. Other tropical species and those in arid regions may shed all their leaves annually, such as at the start of the dry season.[77] Many deciduous trees flower before the new leaves emerge.[78] A few trees do not have true leaves but instead have structures with similar external appearance such as Phylloclades – modified stem structures[79] – as seen in the genus Phyllocladus.[80]

    Reproduction

    Further information: Plant reproductionPollination, and Seed dispersal

    Trees can be pollinated either by wind or by animals, mostly insects. Many angiosperm trees are insect pollinated. Wind pollination may take advantage of increased wind speeds high above the ground.[81] Trees use a variety of methods of seed dispersal. Some rely on wind, with winged or plumed seeds. Others rely on animals, for example with edible fruits. Others again eject their seeds (ballistic dispersal), or use gravity so that seeds fall and sometimes roll.[82]

    Seeds

    Main article: Seed

    Wind dispersed seed of elm (Ulmus), ash (Fraxinus) and maple (Acer)

    Seeds are the primary way that trees reproduce and their seeds vary greatly in size and shape. Some of the largest seeds come from trees, but the largest tree, Sequoiadendron giganteum, produces one of the smallest tree seeds.[83] The great diversity in tree fruits and seeds reflects the many different ways that tree species have evolved to disperse their offspring. For a tree seedling to grow into an adult tree it needs light. If seeds only fell straight to the ground, competition among the concentrated saplings and the shade of the parent would likely prevent it from flourishing. Many seeds such as birch are small and have papery wings to aid dispersal by the wind. Ash trees and maples have larger seeds with blade shaped wings which spiral down to the ground when released. The kapok tree has cottony threads to catch the breeze.[84] The flame tree Delonix regia shoots its seeds through the air when the two sides of its long pods crack apart explosively on drying.[84] The miniature cone-like catkins of alder trees produce seeds that contain small droplets of oil that help disperse the seeds on the surface of water. Mangroves often grow in water and some species have buoyant fruits with seeds that start germinating before they detach from the parent tree.[85][86] These float on the water and may become lodged on emerging mudbanks and successfully take root.[84]

    Cracked thorny skin of a Aesculus tree seed

    Other seeds, such as apple pips and plum stones, have fleshy receptacles and smaller fruits like hawthorns have seeds enclosed in edible tissue; animals including mammals and birds eat the fruits and either discard the seeds, or swallow them so they pass through the gut to be deposited in the animal’s droppings well away from the parent tree. The germination of some seeds is improved when they are processed in this way.[87] Nuts may be gathered by animals such as squirrels that cache any not immediately consumed.[88] Many of these caches are never revisited; the nut-casing softens with rain and frost, and the surviving seeds germinate in the spring.[89] Pine cones may similarly be hoarded by red squirrels, and grizzly bears may help to disperse the seed by raiding squirrel caches.[90]

    The seeds of conifers, the largest group of gymnosperms, are enclosed in a cone and most species have seeds that are light and papery that can be blown considerable distances once free from the cone.[91] Sometimes the seed remains in the cone for years waiting for a trigger event to liberate it. Fire stimulates release and germination of seeds of the jack pine, and also enriches the forest floor with wood ash and removes competing vegetation.[92] Similarly, a number of angiosperms including Acacia cyclops and Acacia mangium have seeds that germinate better after exposure to high temperatures.[93] The single extant species of Ginkgophyta (Ginkgo biloba) has fleshy seeds produced at the ends of short branches on female trees,[94] and Gnetum, a tropical and subtropical group of gymnosperms produce seeds at the tip of a shoot axis.[95]

    Evolutionary history

    Further information: Evolutionary history of plants

    Lepidodendron, an extinct lycophyte tree
    Palms and cycads as they might have appeared in the middle Tertiary

    The earliest trees were tree fernshorsetails and lycophytes, which grew in forests in the Carboniferous period. The first tree may have been Wattieza, fossils of which were found in New York state in 2007 dating back to the Middle Devonian (about 385 million years ago). Prior to this discovery, Archaeopteris was the earliest known tree.[96] Both of these reproduced by spores rather than seeds and are considered to be links between ferns and the gymnosperms which evolved in the Triassic period. The gymnosperms include conifers, cycads, gnetales and ginkgos and these may have appeared as a result of a whole genome duplication event which took place about 319 million years ago.[97] Ginkgophyta was once a widespread diverse group[98] of which the only survivor is the maidenhair tree Ginkgo biloba. This is considered to be a living fossil because it is virtually unchanged from the fossilised specimens found in Triassic deposits.[99]

    During the Mesozoic (245 to 66 million years ago) the conifers flourished and became adapted to live in all the major terrestrial habitats. Subsequently, the tree forms of flowering plants evolved during the Cretaceous period. These began to displace the conifers during the Tertiary era (66 to 2 million years ago) when forests covered the globe.[100] When the climate cooled 1.5 million years ago and the first of four glacial periods occurred, the forests retreated as the ice advanced. In the interglacials, trees recolonised the land that had been covered by ice, only to be driven back again in the next glacial period.[100]

    Ecology

    Further information: Forest

    Trees are an important part of the terrestrial ecosystem,[101] providing essential habitats including many kinds of forest for communities of organisms. Epiphytic plants such as ferns, some mosses, liverworts, orchids and some species of parasitic plants (e.g., mistletoe) hang from branches;[102] these along with arboreal lichens, algae, and fungi provide micro-habitats for themselves and for other organisms, including animals. Leaves, flowers and fruits are seasonally available. On the ground underneath trees there is shade, and often there is undergrowth, leaf litter, and decaying wood that provide other habitat.[103][104] Trees stabilise the soil, prevent rapid run-off of rain water, help prevent desertification, have a role in climate control and help in the maintenance of biodiversity and ecosystem balance.[105]

    Many species of tree support their own specialised invertebrates. In their natural habitats, 284 different species of insect have been found on the English oak (Quercus robur)[106] and 306 species of invertebrate on the Tasmanian oak (Eucalyptus obliqua).[107] Non-native tree species provide a less biodiverse community, for example in the United Kingdom the sycamore (Acer pseudoplatanus), which originates from southern Europe, has few associated invertebrate species, though its bark supports a wide range of lichens, bryophytes and other epiphytes.[108] Trees differ ecologically in the ease with which they can be found by herbivores. Tree apparency varies with a tree’s size and semiochemical content, and with the extent to which it is concealed by nonhost neighbours from its insect pests.[109]

    In ecosystems such as mangrove swamps, trees play a role in developing the habitat, since the roots of the mangrove trees reduce the speed of flow of tidal currents and trap water-borne sediment, reducing the water depth and creating suitable conditions for further mangrove colonisation. Thus mangrove swamps tend to extend seawards in suitable locations.[110] Mangrove swamps also provide an effective buffer against the more damaging effects of cyclones and tsunamis.[111]

    Uses

    Food

    Further information: Nut (fruit) and Fruit

    Trees are the source of many of the world’s best known fleshy fruits. Apples, pears, plums, cherries and citrus are all grown commercially in temperate climates and a wide range of edible fruits are found in the tropics. Other commercially important fruit include dates, figs and olives. Palm oil is obtained from the fruits of the oil palm (Elaeis guineensis). The fruits of the cocoa tree (Theobroma cacao) are used to make cocoa and chocolate and the berries of coffee trees, Coffea arabica and Coffea canephora, are processed to extract the coffee beans. In many rural areas of the world, fruit is gathered from forest trees for consumption.[112] Many trees bear edible nuts which can loosely be described as being large, oily kernels found inside a hard shell. These include coconuts (Cocos nucifera), Brazil nuts (Bertholletia excelsa), pecans (Carya illinoinensis), hazel nuts (Corylus), almonds (Prunus dulcis), walnuts (Juglans regia), pistachios (Pistacia vera) and many others. They are high in nutritive value and contain high-quality protein, vitamins and minerals as well as dietary fibre.[113] A variety of nut oils are extracted by pressing for culinary use; some such as walnut, pistachio and hazelnut oils are prized for their distinctive flavours, but they tend to spoil quickly.[114]

    Sugar maple (Acer saccharum) tapped to collect sap for maple syrup

    In temperate climates there is a sudden movement of sap at the end of the winter as trees prepare to burst into growth. In North America, the sap of the sugar maple (Acer saccharum) is used in the production of maple syrup. About 90% of the sap is water, the remaining 10% being a mixture of various sugars and certain minerals. The sap is harvested by drilling holes in the trunks of the trees and collecting the liquid that flows out of the inserted spigots; the sap is then heated to concentrate the flavour. Similarly in northern Europe the spring rise in the sap of the silver birch (Betula pendula) is tapped and collected, either to be drunk fresh or fermented into an alcoholic drink. In Alaska, the sap of the sweet birch (Betula lenta) is made into a syrup with a sugar content of 67%. Sweet birch sap is more dilute than maple sap; a hundred litres are required to make one litre of birch syrup.[115]

    Various parts of trees are used as spices. These include cinnamon, made from the bark of the cinnamon tree (Cinnamomum zeylanicum) and allspice, the dried small fruits of the pimento tree (Pimenta dioica). Nutmeg is a seed found in the fleshy fruit of the nutmeg tree (Myristica fragrans) and cloves are the unopened flower buds of the clove tree (Syzygium aromaticum).[116]

    Many trees have flowers rich in nectar which are attractive to bees. The production of forest honey is an important industry in rural areas of the developing world where it is undertaken by small-scale beekeepers using traditional methods.[117] The flowers of the elder (Sambucus) are used to make elderflower cordial and petals of the plum (Prunus spp.) can be candied.[118] Sassafras oil is a flavouring obtained from distilling bark from the roots of the sassafras tree (Sassafras albidum).

    The leaves of trees are widely gathered as fodder for livestock and some can be eaten by humans but they tend to be high in tannins which makes them bitter. Leaves of the curry tree (Murraya koenigii) are eaten, those of kaffir lime (Citrus × hystrix) (in Thai food)[119] and Ailanthus (in Korean dishes such as bugak) and those of the European bay tree (Laurus nobilis) and the California bay tree (Umbellularia californica) are used for flavouring food.[116] Camellia sinensis, the source of tea, is a small tree but seldom reaches its full height, being heavily pruned to make picking the leaves easier.[120]

    Wood smoke can be used to preserve food. In the hot smoking process the food is exposed to smoke and heat in a controlled environment. The food is ready to eat when the process is complete, having been tenderised and flavoured by the smoke it has absorbed. In the cold process, the temperature is not allowed to rise above 100 °F (38 °C). The flavour of the food is enhanced but raw food requires further cooking. If it is to be preserved, meat should be cured before cold smoking.[121]

    Fuel

    Main article: Wood fuel

    Selling firewood at a market

    Wood has traditionally been used for fuel, especially in rural areas. In less developed nations it may be the only fuel available and collecting firewood is often a time-consuming task as it becomes necessary to travel further and further afield in the search for fuel.[122] It is often burned inefficiently on an open fire. In more developed countries other fuels are available and burning wood is a choice rather than a necessity. Modern wood-burning stoves are very fuel efficient and new products such as wood pellets are available to burn.[123]

    Charcoal can be made by slow pyrolysis of wood by heating it in the absence of air in a kiln. The carefully stacked branches, often oak, are burned with a very limited amount of air. The process of converting them into charcoal takes about fifteen hours. Charcoal is used as a fuel in barbecues and by blacksmiths and has many industrial and other uses.[124]

    Timber

    Main article: Timber

    Roof trusses made from softwood

    Timber, “trees that are grown in order to produce wood”[125] is cut into lumber (sawn wood) for use in construction. Wood has been an important, easily available material for construction since humans started building shelters. Engineered wood products are available which bind the particles, fibres or veneers of wood together with adhesives to form composite materials. Plastics have taken over from wood for some traditional uses.[126]

    Wood is used in the construction of buildings, bridges, trackways, piles, poles for power lines, masts for boats, pit props, railway sleepers, fencing, hurdles, shuttering for concrete, pipes, scaffolding and pallets. In housebuilding it is used in joinery, for making joists, roof trusses, roofing shingles, thatching, staircases, doors, window frames, floor boards, parquet flooring, panelling and cladding.[127]

    Trees in art: Weeping WillowClaude Monet, 1918

    Wood is used to construct carts, farm implements, boats, dugout canoes and in shipbuilding. It is used for making furniture, tool handles, boxes, ladders, musical instruments, bows, weapons, matches, clothes pegs, brooms, shoes, baskets, turnery, carving, toys, pencils, rollers, cogs, wooden screws, barrels, coffins, skittles, veneers, artificial limbs, oars, skis, wooden spoons, sports equipment and wooden balls.[127]

    Wood is pulped for paper and used in the manufacture of cardboard and made into engineered wood products for use in construction such as fibreboardhardboardchipboard and plywood.[127] The wood of gymnosperms is known as softwood while that of angiosperms is known as hardwood.[128]

    Art

    Besides inspiring artists down the centuries, trees have been used to create art. Living trees have been used in bonsai and in tree shaping, and both living and dead specimens have been sculpted into sometimes fantastic shapes.[129]

    Bonsai

    Informal upright style of bonsai on a juniper tree

    Main article: Bonsai

    Bonsai (盆栽, lit. “Tray planting”)[130] is the practice of growing and shaping small trees, originating in China as penjing and spreading to Japan more than a thousand years ago, there are also similar practices in other cultures like the living miniature landscapes of Vietnam hòn non bộ. The word bonsai is often used in English as an umbrella term for all miniature trees in containers or pots.[131]

    The purposes of bonsai are primarily contemplation (for the viewer) and the pleasant exercise of effort and ingenuity (for the grower).[132] Bonsai practice focuses on long-term cultivation and shaping of one or more small trees growing in a container, beginning with a cutting, seedling, or small tree of a species suitable for bonsai development. Bonsai can be created from nearly any perennial woody-stemmed tree or shrub species[133] that produces true branches and can be cultivated to remain small through pot confinement with crown and root pruning. Some species are popular as bonsai material because they have characteristics, such as small leaves or needles, that make them appropriate for the compact visual scope of bonsai and a miniature deciduous forest can even be created using such species as Japanese mapleJapanese zelkova or hornbeam.[134]

    Tree shaping

    Main article: Tree shaping

    People trees, by Pooktre

    Tree shaping is the practice of changing living trees and other woody plants into man made shapes for art and useful structures. There are a few different methods[135] of shaping a tree. There is a gradual method and there is an instant method. The gradual method slowly guides the growing tip along predetermined pathways over time whereas the instant method bends and weaves saplings 2 to 3 m (6.6 to 9.8 ft) long into a shape that becomes more rigid as they thicken up.[136] Most artists use grafting of living trunks, branches, and roots, for art or functional structures and there are plans to grow “living houses” with the branches of trees knitting together to give a solid, weatherproof exterior combined with an interior application of straw and clay to provide a stucco-like inner surface.[136]

    Tree shaping has been practised for at least several hundred years, the oldest known examples being the living root bridges built and maintained by the Khasi people of Meghalaya, India using the roots of the rubber tree (Ficus elastica).[137][138]

    Bark

    Recently stripped cork oak (Quercus suber)

    Further information: Bark (botany)

    Cork is produced from the thick bark of the cork oak (Quercus suber). It is harvested from the living trees about once every ten years in an environmentally sustainable industry.[139] More than half the world’s cork comes from Portugal and is largely used to make stoppers for wine bottles.[140] Other uses include floor tiles, bulletin boards, balls, footwear, cigarette tips, packaging, insulation and joints in woodwind instruments.[140]

    The bark of other varieties of oak has traditionally been used in Europe for the tanning of hides though bark from other species of tree has been used elsewhere. The active ingredient, tannin, is extracted and after various preliminary treatments, the skins are immersed in a series of vats containing solutions in increasing concentrations. The tannin causes the hide to become supple, less affected by water and more resistant to bacterial attack.[141]

    At least 120 drugs come from plant sources, many of them from the bark of trees.[142] Quinine originates from the cinchona tree (Cinchona) and was for a long time the remedy of choice for the treatment of malaria.[143] Aspirin was synthesised to replace the sodium salicylate derived from the bark of willow trees (Salix) which had unpleasant side effects.[144] The anti-cancer drug Paclitaxel is derived from taxol, a substance found in the bark of the Pacific yew (Taxus brevifolia).[145] Other tree based drugs come from the paw-paw (Carica papaya), the cassia (Cassia spp.), the cocoa tree (Theobroma cacao), the tree of life (Camptotheca acuminata) and the downy birch (Betula pubescens).[142]

    The papery bark of the paper birch (Betula papyrifera) tree was used extensively by Native AmericansWigwams were covered by it and canoes were constructed from it. Other uses included food containers, hunting and fishing equipment, musical instruments, toys and sledges.[146] Nowadays, bark chips, a by-product of the timber industry, are used as a mulch and as a growing medium for epiphytic plants that need a soil-free compost.[147]

    An avenue of London planes (Platanus × hispanica) in a garden in Belgium.

    Ornamental trees

    Main article: Ornamental trees

    Trees create a visual impact in the same way as do other landscape features and give a sense of maturity and permanence to park and garden. They are grown for the beauty of their forms, their foliage, flowers, fruit and bark and their siting is of major importance in creating a landscape. They can be grouped informally, often surrounded by plantings of bulbs, laid out in stately avenues or used as specimen trees. As living things, their appearance changes with the season and from year to year.[148]

    Yellow cassia, an ornamental tree with yellow flowers

    Trees are often planted in town environments where they are known as street trees or amenity trees. They can provide shade and cooling through evapotranspiration, absorb greenhouse gases and pollutants, intercept rainfall, and reduce the risk of flooding. Scientific studies show that street trees help cities be more sustainable, and improve the physical and mental wellbeing of the citizens.[149] It has been shown that they are beneficial to humans in creating a sense of well-being and reducing stress. Many towns have initiated tree-planting programmes.[150] In London for example, there is an initiative to plant 20,000 new street trees and to have an increase in tree cover of 5% by 2025, equivalent to one tree for every resident.[151]

    Other uses

    Further information: ResinLatex, and Camphor

    Latex collecting from a rubber tree (Hevea brasiliensis)

    Latex is a sticky defensive secretion that protects plants against herbivores. Many trees produce it when injured but the main source of the latex used to make natural rubber is the Pará rubber tree (Hevea brasiliensis). Originally used to create bouncy balls and for the waterproofing of cloth, natural rubber is now mainly used in tyres for which synthetic materials have proved less durable.[152] The latex exuded by the balatá tree (Manilkara bidentata) is used to make golf balls and is similar to gutta-percha, made from the latex of the “getah perca” tree Palaquium. This is also used as an insulator, particularly of undersea cables, and in dentistry, walking sticks and gun butts. It has now largely been replaced by synthetic materials.[153]

    Resin is another plant exudate that may have a defensive purpose. It is a viscous liquid composed mainly of volatile terpenes and is produced mostly by coniferous trees. It is used in varnishes, for making small castings and in ten-pin bowling balls. When heated, the terpenes are driven off and the remaining product is called “rosin” and is used by stringed instrumentalists on their bows. Some resins contain essential oils and are used in incense and aromatherapy. Fossilised resin is known as amber and was mostly formed in the Cretaceous (145 to 66 million years ago) or more recently. The resin that oozed out of trees sometimes trapped insects or spiders and these are still visible in the interior of the amber.[154]

    The camphor tree (Cinnamomum camphora) produces an essential oil[116] and the eucalyptus tree (Eucalyptus globulus) is the main source of eucalyptus oil which is used in medicine, as a fragrance and in industry.[155]

    Threats

    Individual trees

    Dead trees pose a safety risk, especially during high winds and severe storms, and removing dead trees involves a financial burden, whereas the presence of healthy trees can clean the air, increase property values, and reduce the temperature of the built environment and thereby reduce building cooling costs. During times of drought, trees can fall into water stress, which may cause a tree to become more susceptible to disease and insect problems, and ultimately may lead to a tree’s death. Irrigating trees during dry periods can reduce the risk of water stress and death.[156]

    Conservation

    About a third of all tree species, some twenty thousand, are included in the IUCN Red List of Threatened Species. Of those, over eight thousand are globally threatened, including at least 1400 which are classed as “critically endangered”.[157]

    Mythology

    Main article: Trees in mythology

    Yggdrasil, the World Ash of Norse mythology

    Trees have been venerated since time immemorial. To the ancient Celts, certain trees, especially the oakash and thorn, held special significance[158] as providing fuel, building materials, ornamental objects and weaponry. Other cultures have similarly revered trees, often linking the lives and fortunes of individuals to them or using them as oracles. In Greek mythologydryads were believed to be shy nymphs who inhabited trees.

    The Oubangui people of west Africa plant a tree when a child is born. As the tree flourishes, so does the child but if the tree fails to thrive, the health of the child is considered at risk. When it flowers it is time for marriage. Gifts are left at the tree periodically and when the individual dies, their spirit is believed to live on in the tree.[159]

    Trees have their roots in the ground and their trunk and branches extended towards the sky. This concept is found in many of the world’s religions as a tree which links the underworld and the earth and holds up the heavens. In Norse mythologyYggdrasil is a central cosmic tree whose roots and branches extend to various worlds. Various creatures live on it.[160] In India, Kalpavriksha is a wish-fulfilling tree, one of the nine jewels that emerged from the primitive ocean. Icons are placed beneath it to be worshipped, tree nymphs inhabit the branches and it grants favours to the devout who tie threads round the trunk.[161] Democracy started in North America when the Great Peacemaker formed the Iroquois Confederacy, inspiring the warriors of the original five American nations to bury their weapons under the Tree of Peace, an eastern white pine (Pinus strobus).[162] In the creation story in the Bible, the tree of life and the knowledge of good and evil was planted by God in the Garden of Eden.[163]

    Sacred groves exist in China, India, Africa and elsewhere. They are places where the deities live and where all the living things are either sacred or are companions of the gods. Folklore lays down the supernatural penalties that will result if desecration takes place for example by the felling of trees. Because of their protected status, sacred groves may be the only relicts of ancient forest and have a biodiversity much greater than the surrounding area.[164] Some Ancient Indian tree deities, such as Puliyidaivalaiyamman, the Tamil deity of the tamarind tree, or Kadambariyamman, associated with the cadamba tree, were seen as manifestations of a goddess who offers her blessings by giving fruits in abundance.[165]

    Superlative trees

    Main article: List of superlative trees

    The General Sherman Tree, thought to be the world’s largest by volume

    Trees have a theoretical maximum height of 130 m (430 ft),[166] but the tallest known specimen on earth is believed to be a coast redwood (Sequoia sempervirens) at Redwood National Park, California. It has been named Hyperion and is 115.85 m (380.1 ft) tall.[167] In 2006, it was reported to be 379.1 ft (115.5 m) tall.[168] The tallest known broad-leaved tree is a mountain ash (Eucalyptus regnans) growing in Tasmania with a height of 99.8 m (327 ft).[169]

    The largest tree by volume is believed to be a giant sequoia (Sequoiadendron giganteum) known as the General Sherman Tree in the Sequoia National Park in Tulare County, California. Only the trunk is used in the calculation and the volume is estimated to be 1,487 m3 (52,500 cu ft).[170]

    The oldest living tree with a verified age is also in California. It is a Great Basin bristlecone pine (Pinus longaeva) growing in the White Mountains. It has been dated by drilling a core sample and counting the annual rings. It is estimated to currently be 5,079 years old.[a][171]

    A little farther south, at Santa Maria del TuleOaxaca, Mexico, is the tree with the broadest trunk. It is a Montezuma cypress (Taxodium mucronatum) known as Árbol del Tule and its diameter at breast height is 11.62 m (38.1 ft) giving it a girth of 36.2 m (119 ft). The tree’s trunk is far from round and the exact dimensions may be misleading as the circumference includes much empty space between the large buttress roots.[172]

  • PLANTS

    Plants are the eukaryotes that form the kingdom Plantae; they are predominantly photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with cyanobacteria to produce sugars from carbon dioxide and water, using the green pigment chlorophyll. Exceptions are parasitic plants that have lost the genes for chlorophyll and photosynthesis, and obtain their energy from other plants or fungi. Most plants are multicellular, except for some green algae.

    Historically, as in Aristotle’s biology, the plant kingdom encompassed all living things that were not animals, and included algae and fungi. Definitions have narrowed since then; current definitions exclude fungi and some of the algae. By the definition used in this article, plants form the clade Viridiplantae (green plants), which consists of the green algae and the embryophytes or land plants (hornwortsliverwortsmosseslycophytesfernsconifers and other gymnosperms, and flowering plants). A definition based on genomes includes the Viridiplantae, along with the red algae and the glaucophytes, in the clade Archaeplastida.

    There are about 380,000 known species of plants, of which the majority, some 260,000, produce seeds. They range in size from single cells to the tallest trees. Green plants provide a substantial proportion of the world’s molecular oxygen; the sugars they create supply the energy for most of Earth’s ecosystems, and other organisms, including animals, either eat plants directly or rely on organisms which do so.

    Grainfruit, and vegetables are basic human foods and have been domesticated for millennia. People use plants for many purposes, such as building materials, ornaments, writing materials, and, in great variety, for medicines. The scientific study of plants is known as botany, a branch of biology.

    Definition

    Taxonomic history

    Further information: Kingdom (biology) § History

    All living things were traditionally placed into one of two groups, plants and animals. This classification dates from Aristotle (384–322 BC), who distinguished different levels of beings in his biology,[5] based on whether living things had a “sensitive soul” or like plants only a “vegetative soul”.[6] Theophrastus, Aristotle’s student, continued his work in plant taxonomy and classification.[7] Much later, Linnaeus (1707–1778) created the basis of the modern system of scientific classification, but retained the animal and plant kingdoms, naming the plant kingdom the Vegetabilia.[7]

    Alternative concepts

    When the name Plantae or plant is applied to a specific group of organisms or taxa, it usually refers to one of four concepts. From least to most inclusive, these four groupings are:

    Name(s)ScopeOrganisationDescription
    Land plants, also known as EmbryophytaPlantae sensu strictissimoMulticellularPlants in the strictest sense include liverwortshornwortsmosses, and vascular plants, as well as fossil plants similar to these surviving groups (e.g., Metaphyta Whittaker, 1969,[8] Plantae Margulis, 1971[9]).
    Green plants, also known as Viridiplantae, Viridiphyta, Chlorobionta or ChloroplastidaPlantae sensu strictoSome unicellular, some multicellularPlants in a strict sense include the green algae, and land plants that emerged within them, including stoneworts. The relationships between plant groups are still being worked out, and the names given to them vary considerably. The clade Viridiplantae encompasses a group of organisms that have cellulose in their cell walls, possess chlorophylls a and b and have plastids bound by only two membranes that are capable of photosynthesis and of storing starch. This clade is the main subject of this article (e.g., Plantae Copeland, 1956[10]).
    Archaeplastida, also known as Plastida or PrimoplantaePlantae sensu latoSome unicellular, some multicellularPlants in a broad sense comprise the green plants listed above plus the red algae (Rhodophyta) and the glaucophyte algae (Glaucophyta) that store Floridean starch outside the plastids, in the cytoplasm. This clade includes all of the organisms that eons ago acquired their primary chloroplasts directly by engulfing cyanobacteria (e.g., Plantae Cavalier-Smith, 1981[11]).
    Old definitions of plant (obsolete)Plantae sensu amploSome unicellular, some multicellularPlants in the widest sense included the unrelated groups of algaefungi and bacteria on older, obsolete classifications (e.g. Plantae or Vegetabilia Linnaeus 1751,[12] Plantae Haeckel 1866,[13] Metaphyta Haeckel, 1894,[14] Plantae Whittaker, 1969[8]).

    Evolution

    Diversity

    The desmid Cosmarium botrytis is a single cell.
    The coast redwood Sequoia sempervirens is up to 120 metres (380 ft) tall.

    There are about 382,000 accepted species of plants,[15] of which the great majority, some 283,000, produce seeds.[16] The table below shows some species count estimates of different green plant (Viridiplantae) divisions. About 85–90% of all plants are flowering plants. Several projects are currently attempting to collect records on all plant species in online databases, e.g. the World Flora Online.[15][17]

    Plants range in scale from single-celled organisms such as desmids (from 10 micrometres (μm) across) and picozoa (less than 3 μm across),[18][19] to the largest trees (megaflora) such as the conifer Sequoia sempervirens (up to 120 metres (380 ft) tall) and the angiosperm Eucalyptus regnans (up to 100 m (325 ft) tall).[20]

    Informal groupDivision nameCommon nameNo. of living species
    Green algaeChlorophytaGreen algae (chlorophytes)3800–4300[21][22]
    CharophytaGreen algae (e.g. desmids & stoneworts)2800–6000[23][24]
    BryophytesMarchantiophytaLiverworts6000–8000[25]
    AnthocerotophytaHornworts100–200[26]
    BryophytaMosses12000[27]
    PteridophytesLycopodiophytaClubmosses1200[28]
    PolypodiophytaFerns, whisk ferns & horsetails11000[28]
    Spermatophytes
    (seed plants)
    CycadophytaCycads160[29]
    GinkgophytaGinkgo1[30]
    PinophytaConifers630[28]
    GnetophytaGnetophytes70[28]
    AngiospermaeFlowering plants258650[31]

    The naming of plants is governed by the International Code of Nomenclature for algae, fungi, and plants[32] and the International Code of Nomenclature for Cultivated Plants.[33]

    Evolutionary history

    Main article: Evolutionary history of plants

    The ancestors of land plants evolved in water. An algal scum formed on the land 1,200 million years ago, but it was not until the Ordovician, around 450 million years ago, that the first land plants appeared, with a level of organisation like that of bryophytes.[34][35] However, fossils of organisms with a flattened thallus in Precambrian rocks suggest that multicellular freshwater eukaryotes existed over 1000 mya.[36]

    Primitive land plants began to diversify in the late Silurian, around 420 million years ago. Bryophytes, club mosses, and ferns then appear in the fossil record.[37] Early plant anatomy is preserved in cellular detail in an early Devonian fossil assemblage from the Rhynie chert. These early plants were preserved by being petrified in chert formed in silica-rich volcanic hot springs.[38]

    By the end of the Devonian, most of the basic features of plants today were present, including roots, leaves and secondary wood in trees such as Archaeopteris.[39][40] The Carboniferous period saw the development of forests in swampy environments dominated by clubmosses and horsetails, including some as large as trees, and the appearance of early gymnosperms, the first seed plants.[41] The Permo-Triassic extinction event radically changed the structures of communities.[42] This may have set the scene for the evolution of flowering plants in the Triassic (~200 million years ago), with an adaptive radiation in the Cretaceous so rapid that Darwin called it an “abominable mystery“.[43][44][45] Conifers diversified from the Late Triassic onwards, and became a dominant part of floras in the Jurassic.[46][47]

    Phylogeny

    In 2019, a phylogeny based on genomes and transcriptomes from 1,153 plant species was proposed.[48] The placing of algal groups is supported by phylogenies based on genomes from the Mesostigmatophyceae and Chlorokybophyceae that have since been sequenced. Both the “chlorophyte algae” and the “streptophyte algae” are treated as paraphyletic (vertical bars beside phylogenetic tree diagram) in this analysis, as the land plants arose from within those groups.[49][50] The classification of Bryophyta is supported both by Puttick et al. 2018,[51] and by phylogenies involving the hornwort genomes that have also since been sequenced.[52][53]

    ArchaeplastidaRhodophyta Glaucophyta ViridiplantaeChlorophyta Prasinococcales MesostigmatophyceaeChlorokybophyceaeSpirotaenia Klebsormidiales Chara ColeochaetalesZygnematophyceaeEmbryophytesBryophytesHornworts SetaphytesLiverworts Mosses TracheophytesLycophytes EuphyllophytesFernsSpermatophytesGymnosperms Angiosperms (seed plants)(land plants)(green plants)“chlorophyte algae””streptophyte algae”

    Physiology

    Main article: Plant physiology

    Plant cells

    Main article: Plant cell

    Plant cell structure

    Plant cells have distinctive features that other eukaryotic cells (such as those of animals) lack. These include the large water-filled central vacuolechloroplasts, and the strong flexible cell wall, which is outside the cell membrane. Chloroplasts are derived from what was once a symbiosis of a non-photosynthetic cell and photosynthetic cyanobacteria. The cell wall, made mostly of cellulose, allows plant cells to swell up with water without bursting. The vacuole allows the cell to change in size while the amount of cytoplasm stays the same.[54]

    Plant structure

    Further information: Plant anatomy and Plant morphology

    Anatomy of a seed plant. 1. Shoot system. 2. Root system. 3. Hypocotyl. 4. Terminal bud. 5. Leaf blade. 6. Internode. 7. Axillary bud. 8. Petiole. 9. Stem. 10. Node. 11. Tap root. 12. Root hairs. 13. Root tip. 14. Root cap

    Most plants are multicellular. Plant cells differentiate into multiple cell types, forming tissues such as the vascular tissue with specialized xylem and phloem of leaf veins and stems, and organs with different physiological functions such as roots to absorb water and minerals, stems for support and to transport water and synthesized molecules, leaves for photosynthesis, and flowers for reproduction.[55]

    Photosynthesis

    Main article: Photosynthesis

    Plants photosynthesize, manufacturing food molecules (sugars) using energy obtained from light. Plant cells contain chlorophylls inside their chloroplasts, which are green pigments that are used to capture light energy. The end-to-end chemical equation for photosynthesis is:[56]6CO2+6H2O→lightC6H12O6+6O2

    {\displaystyle {\ce {6CO2{}+6H2O{}->[{\text{light}}]C6H12O6{}+6O2{}}}}

    This causes plants to release oxygen into the atmosphere. Green plants provide a substantial proportion of the world’s molecular oxygen, alongside the contributions from photosynthetic algae and cyanobacteria.[57][58][59]

    Plants that have secondarily adopted a parasitic lifestyle may lose the genes involved in photosynthesis and the production of chlorophyll.[60]

    Growth and repair

    Growth is determined by the interaction of a plant’s genome with its physical and biotic environment.[61] Factors of the physical or abiotic environment include temperaturewater, light, carbon dioxide, and nutrients in the soil.[62] Biotic factors that affect plant growth include crowding, grazing, beneficial symbiotic bacteria and fungi, and attacks by insects or plant diseases.[63]

    Frost and dehydration can damage or kill plants. Some plants have antifreeze proteinsheat-shock proteins and sugars in their cytoplasm that enable them to tolerate these stresses.[64] Plants are continuously exposed to a range of physical and biotic stresses which cause DNA damage, but they can tolerate and repair much of this damage.[65]

    Reproduction

    Main article: Plant reproduction

    Plants reproduce to generate offspring, whether sexually, involving gametes, or asexually, involving ordinary growth. Many plants use both mechanisms.[66]

    Sexual

    Alternation of generations between a haploid (n) gametophyte (top) and a diploid (2n) sporophyte (bottom), in all types of plant

    When reproducing sexually, plants have complex lifecycles involving alternation of generations. One generation, the sporophyte, which is diploid (with 2 sets of chromosomes), gives rise to the next generation, the gametophyte, which is haploid (with one set of chromosomes). Some plants also reproduce asexually via spores. In some non-flowering plants such as mosses, the sexual gametophyte forms most of the visible plant.[67] In seed plants (gymnosperms and flowering plants), the sporophyte forms most of the visible plant, and the gametophyte is very small. Flowering plants reproduce sexually using flowers, which contain male and female parts: these may be within the same (hermaphrodite) flower, on different flowers on the same plant, or on different plants. The stamens create pollen, which produces male gametes that enter the ovule to fertilize the egg cell of the female gametophyte. Fertilization takes place within the carpels or ovaries, which develop into fruits that contain seeds. Fruits may be dispersed whole, or they may split open and the seeds dispersed individually.[68]

    Asexual

    Ficinia spiralis spreads asexually with runners in the sand.

    Plants reproduce asexually by growing any of a wide variety of structures capable of growing into new plants. At the simplest, plants such as mosses or liverworts may be broken into pieces, each of which may regrow into whole plants. The propagation of flowering plants by cuttings is a similar process. Structures such as runners enable plants to grow to cover an area, forming a clone. Many plants grow food storage structures such as tubers or bulbs which may each develop into a new plant.[69]

    Some non-flowering plants, such as many liverworts, mosses and some clubmosses, along with a few flowering plants, grow small clumps of cells called gemmae which can detach and grow.[70][71]

    Disease resistance

    Main article: Plant disease resistance

    Plants use pattern-recognition receptors to recognize pathogens such as bacteria that cause plant diseases. This recognition triggers a protective response. The first such plant receptors were identified in rice[72] and in Arabidopsis thaliana.[73]

    Genomics

    Further information: Plant genome

    Plants have some of the largest genomes of all organisms.[74] The largest plant genome (in terms of gene number) is that of wheat (Triticum aestivum), predicted to encode ≈94,000 genes[75] and thus almost 5 times as many as the human genome. The first plant genome sequenced was that of Arabidopsis thaliana which encodes about 25,500 genes.[76] In terms of sheer DNA sequence, the smallest published genome is that of the carnivorous bladderwort (Utricularia gibba) at 82 Mb (although it still encodes 28,500 genes)[77] while the largest, from the Norway spruce (Picea abies), extends over 19.6 Gb (encoding about 28,300 genes).[78]

    Ecology

    Distribution

    Further information: Biogeography

    A map of a classification of the world’s vegetation into biomes. Those named here include tundrataigatemperate broadleaf foresttemperate steppesubtropical rainforestMediterranean vegetationmonsoon forestarid desertxeric shrublanddry steppe, semiarid desert, grass savanna, tree savanna, subtropical and tropical dry foresttropical rainforestalpine tundra, and montane forests. Shown in gray is “ice sheet and polar desert” devoid of plants.

    Plants are distributed almost worldwide. While they inhabit many biomes which can be divided into a multitude of ecoregions,[79] only the hardy plants of the Antarctic flora, consisting of algae, mosses, liverworts, lichens, and just two flowering plants, have adapted to the prevailing conditions on that southern continent.[80]

    Plants are often the dominant physical and structural component of the habitats where they occur. Many of the Earth’s biomes are named for the type of vegetation because plants are the dominant organisms in those biomes, such as grasslandsavanna, and tropical rainforest.[81]

    Primary producers

    Further information: Autotroph

    The photosynthesis conducted by land plants and algae is the ultimate source of energy and organic material in nearly all ecosystems. Photosynthesis, at first by cyanobacteria and later by photosynthetic eukaryotes, radically changed the composition of the early Earth’s anoxic atmosphere, which as a result is now 21% oxygen. Animals and most other organisms are aerobic, relying on oxygen; those that do not are confined to relatively rare anaerobic environments. Plants are the primary producers in most terrestrial ecosystems and form the basis of the food web in those ecosystems.[82] Plants form about 80% of the world biomass at about 450 gigatonnes (4.4×1011 long tons; 5.0×1011 short tons) of carbon.[83]

    Ecological relationships

    Main article: Plant ecology

    Numerous animals have coevolved with plants; flowering plants have evolved pollination syndromes, suites of flower traits that favour their reproduction. Many, including insect and bird partners, are pollinators, visiting flowers and accidentally transferring pollen in exchange for food in the form of pollen or nectar.[84]

    Many animals disperse seeds that are adapted for such dispersal. Various mechanisms of dispersal have evolved. Some fruits offer nutritious outer layers attractive to animals, while the seeds are adapted to survive the passage through the animal’s gut; others have hooks that enable them to attach to a mammal’s fur.[85] Myrmecophytes are plants that have coevolved with ants. The plant provides a home, and sometimes food, for the ants. In exchange, the ants defend the plant from herbivores and sometimes competing plants. Ant wastes serve as organic fertilizer.[86]

    The majority of plant species have fungi associated with their root systems in a mutualistic symbiosis known as mycorrhiza. The fungi help the plants gain water and mineral nutrients from the soil, while the plant gives the fungi carbohydrates manufactured in photosynthesis.[87] Some plants serve as homes for endophytic fungi that protect the plant from herbivores by producing toxins. The fungal endophyte Neotyphodium coenophialum in tall fescue grass has pest status in the American cattle industry.[88]

    Many legumes have Rhizobium nitrogen-fixing bacteria in nodules of their roots, which fix nitrogen from the air for the plant to use; in return, the plants supply sugars to the bacteria.[89] Nitrogen fixed in this way can become available to other plants, and is important in agriculture; for example, farmers may grow a crop rotation of a legume such as beans, followed by a cereal such as wheat, to provide cash crops with a reduced input of nitrogen fertilizer.[90]

    Some 1% of plants are parasitic. They range from the semi-parasitic mistletoe that merely takes some nutrients from its host, but still has photosynthetic leaves, to the fully-parasitic broomrape and toothwort that acquire all their nutrients through connections to the roots of other plants, and so have no chlorophyll. Full parasites can be extremely harmful to their plant hosts.[91]

    Plants that grow on other plants, usually trees, without parasitizing them, are called epiphytes. These may support diverse arboreal ecosystems. Some may indirectly harm their host plant, such as by intercepting light. Hemiepiphytes like the strangler fig begin as epiphytes, but eventually set their own roots and overpower and kill their host. Many orchidsbromeliads, ferns, and mosses grow as epiphytes.[92] Among the epiphytes, the bromeliads accumulate water in their leaf axils; these water-filled cavities can support complex aquatic food webs.[93]

    Some 630 species of plants are carnivorous, such as the Venus flytrap (Dionaea muscipula) and sundew (Drosera species). They trap small animals and digest them to obtain mineral nutrients, especially nitrogen and phosphorus.[94]

    Competition

    Competition for shared resources reduces a plant’s growth.[95][96] Shared resources include sunlight, water and nutrients. Light is a critical resource because it is necessary for photosynthesis.[95] Plants use their leaves to shade other plants from sunlight and grow quickly to maximize their own expose.[95] Water too is essential for photosynthesis; roots compete to maximize water uptake from soil.[97] Some plants have deep roots that are able to locate water stored deep underground, and others have shallower roots that are capable of extending longer distances to collect recent rainwater.[97] Minerals are important for plant growth and development.[98] Common nutrients competed for amongst plants include nitrogen, phosphorus, and potassium.[99]

    Importance to humans

    Main article: Plants in culture

    Food

    Main article: Agriculture

    Harvesting oats with a combine harvester

    Human cultivation of plants is the core of agriculture, which in turn has played a key role in the history of world civilizations.[100] Humans depend on flowering plants for food, either directly or as feed in animal husbandry. More broadly, agriculture includes agronomy for arable crops, horticulture for vegetables and fruit, and forestry, including both flowering plants and conifers, for timber.[101][102] About 7,000 species of plant have been used for food, though most of today’s food is derived from only 30 species. The major staples include cereals such as rice and wheat, starchy roots and tubers such as cassava and potato, and legumes such as peas and beansVegetable oils such as olive oil and palm oil provide lipids, while fruit and vegetables contribute vitamins and minerals to the diet.[103] Coffeetea, and chocolate are major crops whose caffeine-containing products serve as mild stimulants.[104] The study of plant uses by people is called economic botany or ethnobotany.[105]

    Medicines

    Main article: Medicinal plants

    A medieval physician preparing an extract from a medicinal plant, from an Arabic Dioscorides, 1224

    Medicinal plants are a primary source of organic compounds, both for their medicinal and physiological effects, and for the industrial synthesis of a vast array of organic chemicals.[106] Many hundreds of medicines, as well as narcotics, are derived from plants, both traditional medicines used in herbalism[107][108] and chemical substances purified from plants or first identified in them, sometimes by ethnobotanical search, and then synthesised for use in modern medicine. Modern medicines derived from plants include aspirintaxolmorphinequininereserpinecolchicinedigitalis and vincristinePlants used in herbalism include ginkgoechinaceafeverfew, and Saint John’s wort. The pharmacopoeia of DioscoridesDe materia medica, describing some 600 medicinal plants, was written between 50 and 70 CE and remained in use in Europe and the Middle East until around 1600 CE; it was the precursor of all modern pharmacopoeias.[109][110][111]

    Nonfood products

    Main article: Non-food crop

    Timber in storage for later processing at a sawmill

    Plants grown as industrial crops are the source of a wide range of products used in manufacturing.[112] Nonfood products include essential oilsnatural dyes, pigments, waxesresinstannins, alkaloids, amber and cork. Products derived from plants include soaps, shampoos, perfumes, cosmetics, paint, varnish, turpentine, rubber, latex, lubricants, linoleum, plastics, inks, and gums. Renewable fuels from plants include firewoodpeat and other biofuels.[113][114] The fossil fuels coalpetroleum and natural gas are derived from the remains of aquatic organisms including phytoplankton in geological time.[115] Many of the coal fields date to the Carboniferous period of Earth’s history. Terrestrial plants also form type III kerogen, a source of natural gas.[116][117]

    Structural resources and fibres from plants are used to construct dwellings and to manufacture clothing. Wood is used for buildings, boats, and furniture, and for smaller items such as musical instruments and sports equipment. Wood is pulped to make paper and cardboard.[118] Cloth is often made from cottonflaxramie or synthetic fibres such as rayon, derived from plant cellulose. Thread used to sew cloth likewise comes in large part from cotton.[119]

    Ornamental plants

    Main article: Ornamental plant

    A rose espalier at Niedernhall in Germany

    Thousands of plant species are cultivated for their beauty and to provide shade, modify temperatures, reduce wind, abate noise, provide privacy, and reduce soil erosion. Plants are the basis of a multibillion-dollar per year tourism industry, which includes travel to historic gardensnational parksrainforestsforests with colourful autumn leaves, and festivals such as Japan’s[120] and America’s cherry blossom festivals.[121]

    Plants may be grown indoors as houseplants, or in specialized buildings such as greenhouses. Plants such as Venus flytrap, sensitive plant and resurrection plant are sold as novelties. Art forms specializing in the arrangement of cut or living plant include bonsaiikebana, and the arrangement of cut or dried flowers. Ornamental plants have sometimes changed the course of history, as in tulipomania.[122]

    In science

    Barbara McClintock used maize to study inheritance of traits.

    Further information: Botany and Model organism

    The traditional study of plants is the science of botany.[123] Basic biological research has often used plants as its model organisms. In genetics, the breeding of pea plants allowed Gregor Mendel to derive the basic laws governing inheritance,[124] and examination of chromosomes in maize allowed Barbara McClintock to demonstrate their connection to inherited traits.[125] The plant Arabidopsis thaliana is used in laboratories as a model organism to understand how genes control the growth and development of plant structures.[126] Tree rings provide a method of dating in archeology, and a record of past climates.[127] The study of plant fossils, or Paleobotany, provides information about the evolutions of plants, paleogeographical reconstructions, and past climate change. Plant fossils can also help determine the age of rocks.[128]

    In mythology, religion, and culture

    Further information: Human uses of plants § In mythology and religion

    Plants including trees appear in mythology, religion, and literature.[129][130][131] In multiple Indo-European, Siberian, and Native American religions, the world tree motif is depicted as a colossal tree growing on the earth, supporting the heavens, and with its roots reaching into the underworld. It may also appear as a cosmic tree or an eagle and serpent tree.[132][133] Forms of the world tree include the archetypal tree of life, which is in turn connected to the Eurasian concept of the sacred tree.[134] Another widespread ancient motif, found for example in Iran, has a tree of life flanked by a pair of confronted animals.[135]

    Flowers are often used as memorials, gifts and to mark special occasions such as births, deaths, weddings and holidays. Flower arrangements may be used to send hidden messages.[136] Plants and especially flowers form the subjects of many paintings.[137][138]

    Negative effects

    The musk thistle is an invasive species in Texas.

    Weeds are commercially or aesthetically undesirable plants growing in managed environments such as in agriculture and gardens.[139] People have spread many plants beyond their native ranges; some of these plants have become invasive, damaging existing ecosystems by displacing native species, and sometimes becoming serious weeds of cultivation.[140]

    Some plants that produce windblown pollen, including grasses, invoke allergic reactions in people who suffer from hay fever.[141] Many plants produce toxins to protect themselves from herbivores. Major classes of plant toxins include alkaloidsterpenoids, and phenolics.[142] These can be harmful to humans and livestock by ingestion[143][144] or, as with poison ivy, by contact.[145] Some plants have negative effects on other plants, preventing seedling growth or the growth of nearby plants by releasing allopathic chemicals.[146]